首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   40篇
  国内免费   10篇
化学   12篇
晶体学   1篇
力学   112篇
综合类   4篇
数学   327篇
物理学   47篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   11篇
  2019年   14篇
  2018年   6篇
  2017年   15篇
  2016年   15篇
  2015年   21篇
  2014年   15篇
  2013年   53篇
  2012年   25篇
  2011年   32篇
  2010年   25篇
  2009年   26篇
  2008年   26篇
  2007年   26篇
  2006年   24篇
  2005年   22篇
  2004年   17篇
  2003年   12篇
  2002年   16篇
  2001年   11篇
  2000年   8篇
  1999年   12篇
  1998年   6篇
  1997年   8篇
  1996年   1篇
  1995年   7篇
  1994年   1篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有503条查询结果,搜索用时 31 毫秒
1.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction.  相似文献   
2.
This article presents a local and parallel finite element method for the stationary incompressible magnetohydrodynamics problem. The key idea of this algorithm comes from the two‐grid discretization technique. Specifically, we solve the nonlinear system on a global coarse mesh, and then solve a series of linear problems on several subdomains in parallel. Furthermore, local a priori estimates are obtained on a general shape regular grid. The efficiency of the algorithm is also illustrated by some numerical experiments.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1513–1539, 2017  相似文献   
3.
We propose a hybrid numerical scheme to discretize a class of singularly perturbed parabolic reaction–diffusion problems with robin-boundary conditions on an equidistributed grid. The hybrid difference scheme is developed by using a modified backward difference scheme in time, a combination of the cubic spline and exponential spline difference scheme in space. The proposed scheme uses a cubic spline difference scheme for the discretization of robin-boundary conditions. For the time discretization of the problem, we use the standard uniform mesh while a layer adapted equidistributed grid is generated for the spatial discretization. By equidistributing a curvature-based monitor function, the spatial adaptive grid is able to capture the presence of parabolic boundary layers without using any prior information about the solution. Parameter uniform error estimates are derived to illustrate an optimal convergence of first-order in time and second-order in space for the proposed discretization. The accuracy of the proposed scheme is confirmed by the numerical experiments that underpin the theoretical analysis.  相似文献   
4.
5.
Cover Image     
This paper presents a framework for incorporating arbitrary implicit multistep schemes into the lattice Boltzmann method. While the temporal discretization of the lattice Boltzmann equation is usually derived using a second-order trapezoidal rule, it appears natural to augment the time discretization by using multistep methods. The effect of incorporating multistep methods into the lattice Boltzmann method is studied in terms of accuracy and stability. Numerical tests for the third-order accurate Adams-Moulton method and the second-order backward differentiation formula show that the temporal order of the method can be increased when the stability properties of multistep methods are considered in accordance with the second Dahlquist barrier.  相似文献   
6.
Three new far‐upwind reconstruction techniques, New‐Technique 1, 2, and 3, are proposed in this paper, which localize the normalized variable and space formulation (NVSF) schemes and facilitate the implementation of standard bounded high‐resolution differencing schemes on arbitrary unstructured meshes. By theoretical analysis, it is concluded that the three new techniques overcome two inherent drawbacks of the original technique found in the literature. Eleven classic high‐resolution NVSF schemes developed in the past decades are selected to evaluate performances of the three new techniques relative to the original technique. Under the circumstances of arbitrary unstructured meshes, stretched meshes, and uniform triangular meshes, for each NVSF scheme, the accuracies and convergence properties, when implementing the four aforementioned far‐upwind reconstruction techniques respectively, are assessed by the pure convection of several scalar profiles. The numerical results clearly show that New‐Technique‐2 leads to a better performance in terms of overall accuracy and convergence behavior for the 11 NVSF schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
A vectorial nonlocal and nonlinear parabolic problem on a bounded domain for an intermediate state between type‐I and type‐II superconductivity is proposed. The domain is for instance a multiband superconductor that combines the characteristics of both types. The nonlocal term is represented by a (space) convolution with a singular kernel arising in Eringen's model. The nonlinearity is coming from the power law relation by Rhyner. The well‐posedness of the problem is discussed under low regularity assumptions and the error estimate for a semi‐implicit time‐discrete scheme based on backward Euler approximation is established. In the proofs, the monotonicity methods and the Minty–Browder argument are used. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1551–1567, 2015  相似文献   
8.
This paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov–Galerkin variational formulation of the heat equation in space–time results in a generalized least squares problem. This formulation admits a unique, quasi‐optimal solution in the natural space–time Hilbert space and serves as a basis for the development of space–time compressive solution algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from stable subspace splittings in space and in time, multilevel space–time preconditioners for the normal equations are derived. In order to reduce the complexity of the full space–time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format, supposing that the input data are available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for MATLAB are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually not available. Thus regular methods usually depend on repetitive use of numerical solutions which bring huge computational cost. We proposed a new two-stage approach which includes a smoothing method(kernel smoothing or local polynomial fitting) in the first stage, and a numerical discretization method(Eulers discretization method, the trapezoidal discretization method,or the Runge–Kutta discretization method) in the second stage. Through numerical simulations, we find the proposed method gains a proper balance between estimation accuracy and computational cost.Asymptotic properties are also presented, which show the consistency and asymptotic normality of estimators under some mild conditions. The proposed method is compared to existing methods in term of accuracy and computational cost. The simulation results show that the estimators with local linear smoothing in the first stage and trapezoidal discretization in the second stage have the lowest average relative errors. We apply the proposed method to HIV dynamics data to illustrate the practicability of the estimator.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号